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SUMMARY

Traditional structured and unstructured grid generation methods need a ‘water-tight’ boundary surface
grid to start. Therefore, these methods are named boundary to interior (B2I) approaches. Although
these methods have achieved great success in �uid �ow simulations, the grid generation process can
still be very time consuming if ‘non-water-tight’ geometries are given. Signi�cant user time can be
taken to repair or clean a ‘dirty’ geometry with cracks, overlaps or invalid manifolds before grid
generation can take place. In this paper, we advocate a di�erent approach in grid generation, namely
the interior to boundary (I2B) approach. With an I2B approach, the computational grid is �rst generated
inside the computational domain. Then this grid is intelligently ‘connected’ to the boundary, and the
boundary grid is a result of this ‘connection’. A signi�cant advantage of the I2B approach is that
‘dirty’ geometries can be handled without cleaning or repairing, dramatically reducing grid generation
time. An I2B adaptive Cartesian grid generation method is developed in this paper to handle ‘dirty’
geometries without geometry repair. Comparing with a B2I approach, the grid generation time with the
I2B approach for a complex automotive engine can be reduced by three orders of magnitude. Copyright
? 2002 John Wiley & Sons, Ltd.
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INTRODUCTION

Impressive progresses in computational �uid dynamics (CFD) have been made during the
last two decades in many aspects including algorithms for grid generation and �ow computa-
tion. As a result, CFD is increasingly used in the design process in many industries such as
aerospace, automobile, and many others. Depending on the type of computational grids used,
CFD solution algorithms can be classi�ed as structured and unstructured grid methods. The
structured grid method was popularized with the development of body-�tted-co-ordinate (BFC)
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Figure 1. Problems areas of a dirty geometry in 2D.

grid generation approaches, which include the elliptic, hyperbolic, and algebraic grid gener-
ation techniques [1–5]. Although the structured grid method has been successful in handling
complex geometries, it is usually very time consuming to generate BFC grids for complex
geometries. The di�culty in generating structured grids and the desire to automatically com-
pute �ows over complex geometries spawned a surge of activities in the area of unstructured
grids during the last one-and-half decades [6–18]. Unstructured grids provide considerable
�exibility in tackling complex geometries and for adapting the computational grids according
to �ow features. Types of unstructured grids include classical triangular or tetrahedral grids,
quadrilateral or hexahedral grids, prismatic grids, or mixed grids, and more recently adaptive
Cartesian [19–23], Cartesian=prism [24; 25] and viscous Cartesian grids [26; 27].
With this impressive array of powerful grid generation approaches, the di�culty in grid

generation has shifted from volume grid generation to surface grid generation with ‘non-
water-tight’ geometry de�nitions, which contain topological defects such as gaps or overlaps.
Many CAD packages use boundary representation (BREP) geometries to de�ne solids [28].
With BREP, the boundary surface is composed of multiple boundary patches, which can be
planar polygons, or non-uniform rational B-spline (NURBS) patches. The BREP geometry is
said to be ‘water-tight’ if each boundary curve (of a patch) is shared and shared only by
two patches. In the design process, design engineers use CAD packages to perform detailed
geometry designs. The design of a typical system (for example an automobile engine) involves
thousands of parts. The exact transfer of geometries from one CAD package to another, and
from a CAD package to a grid generator is still an unresolved issue. Even if the CAD model
is exactly transferred from a CAD package to a grid generator, the CAD model may still not
be suitable for grid generation. To generate a computational grid with almost any current grid
generators, a ‘water-tight’ geometry has to be de�ned �rst. If a geometry is ‘water-tight’, then
the geometry is said to be topologically closed. In most cases, ‘dirty geometries’ are caused
by cracks, overlaps or invalid manifolds in the geometry, which are put there by designers
due to either mistakes or carelessness. In two dimensions (2D), these problems are illustrated
in Figure 1. Note that in 2D, each end point of a curve must be and only be shared by two
curves (lines) if the geometry is considered ‘water-tight’. These geometric problems can be
�xed easily for simple geometries. For reasonably complex geometry, geometry repairing can
become very tedious and time consuming.
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In the automobile industry, the stereolithography (STL) format is often used to transfer the
designed geometries from one package to another for visualization, and grid generation. The
use of STL has many advantages. First, the basic parts are de�ned using polygons (mostly
triangles), which are the easiest to visualize on a computer screen. Second, many e�cient
computational geometry algorithms have been developed for triangles to perform operations
such as intersections, projections, etc. Third, most CAD packages can output geometries in
STL format, and lastly the transfer of STL �les from one system to another is exact.
The use of STL �les also has its disadvantages. First, STL-de�ned solids are usually NOT

‘water-tight’, which means that the geometry may have cracks and overlaps. Second, the use
of planar facets to represent curved geometries inevitably result in the loss of accuracy. Third,
the number of triangles used to de�ne a solid is usually dictated by the solid surface curvature.
Small triangles are often used in high-curvature regions, and large triangles are used in �at
regions. The size of these triangles di�ers considerably. In order to perform a meaningful
CFD simulation, the surface often needs to be re-meshed. For a ‘water-tight’ STL geometry,
the remeshing is a relatively easy operation. The advancing front algorithm [6–8] can be
used to remesh the surface. If the geometry is ‘dirty’, however, the remeshing operation can
be prohibitively expensive. One such example is shown in Plate 1, which displays a ‘dirty’
automobile engine geometry. The geometry has 32 STL patches with cracks and overlaps. In
addition, the geometry has topological problems in that some edges are shared by more than
two triangles. Note that for a ‘water-tight’ geometry, each edge must be and only be shared
by two triangles. The yellow lines in Plate 1 show the topological cracks, and the red lines
are edges with topological problems. One can imagine the di�culty in repairing this ‘dirty’
geometry and remeshing the surface of the geometry. It is estimated that it can take a highly
skillful grid generation engineer 2–3 months to repair this geometry for grid generation using
the-state-of-the-art tools.
We cannot help asking the following question: Is it absolutely necessary to repair the geom-

etry before grid generation can take place? Unfortunately, the answer is yes for nearly all the
traditional grid generation approaches we have seen so far, be it the structured or unstructured
grid approaches. All these grid generation approaches need a ‘water-tight’ geometry as the
starting point.
In this paper, we advocate a di�erent grid generation philosophy from the traditional grid

generation approaches in that the interior volume grid is generated �rst before a surface grid
is generated. Then the interior volume grid is ‘intelligently’ connected with the boundary
geometry. We argue that a unique advantage of this new grid generation method is that
‘dirty’ geometries can be meshed without being repaired �rst. We will call the traditional grid
generation approaches boundary to interior (B2I) approaches, and the new method a interior to
boundary (I2B) approach following the popular internet-based naming convention of business
to business (B2B) and business to consumer (B2C).
Another I2B approach was developed by Schneiders [14] for generating hexahedral grids.

Although the approach is similar to the I2B approach developed by the current authors,
there are dramatic di�erences. First, Schneiders’ approach requires ‘water-tight’ geometry. The
intersection operations are designed for ‘water-tight’ geometries only. Second, the volume grid
used in Reference [14] is a uniform Cartesian grid, which is not capable of supporting local
grid re�nement and coarsening. Finally, the current I2B approach is developed for a very
general class of geometry entities (to be de�ned later) with demonstration performed with
STL geometries.
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The paper is, thus, organized as follows. In the next section, we present the new philos-
ophy behind the I2B grid generation method. In order to handle ‘dirty’ geometries, a new
de�nition for geometric entities is presented. Based on this de�nition, a general I2B grid
generation approach is then given. After that, a particular I2B grid generation approach using
adaptive Cartesian grid is presented. Implementation issues such as data structures, algorithm
e�ciency are addressed. Next, several demonstration cases with complex ‘dirty’ geometries
are presented. Finally, conclusions are included in the last section to conclude the paper.

B2I versus I2B grid generation approaches

The �rst step in a CFD simulation involving non-trivial geometries is to import a geometry,
de�ne a closed computational domain, and generate an adequate computational grid. For
external �ow problems, a user must also de�ne a truncated far-�eld boundary such that the
computational domain is �nite and closed. Because the shape of the far-�eld boundary usually
does not a�ect the solution, any elementary shapes such as a sphere or a cube can be used.
For internal �ow problems, the user may need to de�ne an inlet or an exit boundary to
close the computational domain. Generally, the grid generation process can be broken into
the following steps:

• acquire the geometry;
• de�ne a water-tight (closed) computational domain and repair the geometry if necessary;
• de�ne topology (for the structured grid approach);
• generate the computational grid on the boundaries;
• generate the computational grid (i.e. the volume grid) in the interior of the computational
domain.

As can be seen that the conventional grid generation methods MUST start from a boundary
grid, and then the interior grid is generated based on the grid on the boundary. The process
is illustrated in Figure 2. Note that all structured grid generation approaches also fall in this
category. If a ‘dirty’ geometry is imported, the geometry must be cleaned or repaired so that a
‘water-tight’ geometry can be de�ned. Geometry repair can be an extremely time-consuming
business if the geometry is complex. It involves very tedious manual labour of an experienced
grid generation engineer.

Figure 2. The schematic of a traditional B2I grid generation approach.
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Figure 3. Schematic of the new I2B grid generation approach.

It seems that the only possibility of eliminating geometry repairing is to somehow reverse
the grid generation process. Instead of generating the boundary grid �rst, the interior volume
grid must be generated �rst, and then the interior grid is ‘connected’ with the boundary. In
this case, we do not need a ‘water-tight’ geometry to start the grid generation process, and the
approach has the potential of completely eliminating geometry repair from grid generation.
A schematic of this grid generation approach is shown in Figure 3. In Figure 3, the ‘interior’
Cartesian grid is generated �rst. Then the Cartesian grid is ‘connected’ to the boundary (which
has two cracks and one overlap) through projections, i.e. to connect the volume grid to the
boundary in the minimum distance direction. This is only one means of ‘connecting’ the
volume grid to the boundary. Other techniques are de�nitely possible. In order to present
the new I2B grid approach, we need to precisely de�ne what a geometric entity is. Generally
speaking, a geometry is usually represented by a group of surface patches, or solids. A surface
patch can be de�ned with a variety of formats, such as a triangulated surface, a Coons patch, a
NURBS surface, or a computational grid with a square topology. There are also many di�erent
ways of de�ning a solid. One way is the constructive solid geometry. In order to support any
geometry in an arbitrary manner in the present I2B grid generation method, the de�nition
of a geometric entity must be generalized. Besides solids and surface patches in any format,
discrete points and curves can also serve as a geometric entity. In order to support ‘dirty’
geometries, the geometric entities de�ned here do not have ‘inside’ or ‘outside’. Instead, a
geometric entity is de�ned to be any entity supporting the following two operations:

(1) Given a simple solid (e.g. a cube or a tetrahedron), the entity is capable of returning
a status ‘intersected’ or ‘non-intersected’ based upon whether the entity intersects the
given solid. Let the geometric entity be represented by G (which is de�ned as a set of
points), the given solid by S. The intersection operation is I(G; S) is then de�ned by

I(G; S)=

{
1 if G ∩ S �=0
0 otherwise

(2) In the Euclidean space, given an arbitrary point (q) in space, the projection (p) from
the given point to the entity is well de�ned. The line segment from the given point to
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Figure 4. Arbitrary cell subdivision supported by 2n tree.

the projection is the shortest distance from the given point to the entity, i.e.

p(G; q) := |pq|6|rq|r∈G

Note that this de�nition of geometric entity is very general, and any geometry de�ned with
a solid or a surface patch can be seen to be a valid geometric entity, since these operations
can be easily implemented. Note that any discrete points, lines, curves, and planes are also
valid geometric entities.
Before we present the general I2B grid generation approach for a given set of geometric

entities, two meshing parameters, dmin and dmax are given. They represent the minimum and
maximum sizes of grid cells to be generated. The only requirement that the set of geometric
entities must satisfy is that the computational domain formed with the entities is ‘physically’
closed if gaps or holes smaller than dmin are ignored. This is to say that if a gap or a hole
exists in the geometry (which should not have been there), the size of the gap or the hole must
be smaller than dmin. Note that this enclosure condition is much weaker than the condition
of ‘water-tightness’ required by B2I approaches. Obviously, if all the gaps between the line
segments in Figure 3 are smaller than dmin, the set of line segments actually de�nes a valid
computational domain. There is one other possible complication the user must clarify. For the
computational domain de�ned with the line segments as shown in Figure 3, the user needs
to decide whether the ‘inside’ or the ‘outside’ should be the computational domain. For the
grid shown in Figure 4, the ‘inside’ represents the computational domain.
With the above de�nition and clari�cations, we are ready to present our general I2B grid

generation approach.

(1) determine the size of the computational domain, and �ll the computational domain with
a particular type of simple solids or cells (cubes or tetrahedra) whose sizes are between
dmin and dmax;

(2) determine the cells which intersect the set of geometric entities;
(3) recursively re�ne the cells intersected by the geometric entities until all the cells are

smaller than a given threshold dint (which is usually chosen to be 2dmin). This require-
ment guarantees that a minimum grid resolution near all geometric entities is achieved.
Note that all cells must be bigger than dmin;
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(4) select one cell in the computational domain, and use a neighbour-painting algorithm to
identify all cells in the computational domain;

(5) remove all the cells intersected by the geometric entities, and all unpainted cells;
(6) remove cells too close to the geometry;
(7) connect the exposed Cartesian faces to the geometric entities through projections.

A schematic showing the major steps of the method is showing in Plate 2.
Next, we present an I2B grid generation approach based on the adaptive Cartesian grid

method. The viscous Cartesian grid method developed by Wang et al. [26; 27] is further
extended to be a truly I2B method capable of handling complex dirty geometries.

I2B ADAPTIVE CARTESIAN GRID METHOD

Supported geometric entities

As mentioned earlier, any entities supporting the operations de�ned in the last section can be
considered as geometric entities. In this paper, however, we have limited ourselves to points,
lines, line segments and triangulated surfaces. This choice is really dictated by the type of
geometric inputs we usually get, and does not imply that other choices are not possible.
In particular, in many cases, especially in the automotive industry, the input geometry is
in the STL format because of its portability and popularity. The fact that the surface is
de�ned by triangles (or polygons in general) makes the geometry easy to display, transport,
and manipulate. This format can be exported by nearly all the major CAD packages, and is
independent of the CAD systems where the surface is created. Each STL �le can be viewed
as a separate ‘part’, and a system of parts can be produced by concatenating all the part
�les. This feature is particularly useful in the early design stage, in which many of the parts
undergo constant design modi�cations.
Surface grids in other formats such as PLOT3D, FAST and PATRAN formats can be easily

converted into triangulated surfaces, and serve as geometric entities. For example, given a
PLOT3D structured surface grid, each quadrilateral of the surface grid can be divided into
two or four triangles, thus producing a triangulated surface.
If one is interested in dealing with NURBS or IGES patches, one approach is to generate

a ‘structured grid’ for the patch using the local co-ordinates in the parameter space. This
structured grid is then subdivided into a triangulated surface. This triangulated surface can be
viewed as a ‘�nite resolution’ representation of the true NURBS or IGES patch.

Interior grid generation

Once the geometric entities are given, the next step is to de�ne the computational domain.
Based on whether the problem is an internal or external �ow problem, the size of the compu-
tational domain can be determined. For an external �ow problem, there is usually a character-
istic body length L (the chord length of an airfoil, or the length of an aircraft). The far-�eld
boundary should usually be at least 10 times the body length away from the geometry so
that the location of the far-�eld boundary does not in�uence the solution quality signi�cantly.
For an internal �ow problem, there are usually an inlet and exit. If the inlet and exit are
not de�ned, the user must �rst de�ne the inlet and exit geometry based on experiences and
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common sense. For example, inlet and exit surfaces can be usually assumed to be planar.
With properly de�ned inlets and exits, the physical domain of interest should be physically
closed excluding gaps or holes smaller than dmin. The computational domain must be big
enough to contain the physical domain of interest.
Once the size of the computational domain is determined, we are ready to generate the

interior grid. ‘Interior’ here means ‘inside’ the computational domain, and not necessarily
inside a geometry (e.g. for external �ow problems). To generate a computational grid inside a
computational domain, the easiest approach may be to use a uniform Cartesian grid. However,
in this paper, 2n tree adaptive Cartesian grids are used following the viscous Cartesian grid
approach [26; 27]. The adaptive Cartesian grids can be clustered or de-clustered in a truly
arbitrary fashion. In the 2n tree data structure, one tree node can have 2, 4, or 8 children
as shown in Plate 3. This tree can be used to record the recursive subdivisions of a single
Cartesian cell in an arbitrary fashion as shown in Figure 4. Note that a Cartesian cell using
the 2n tree data structure can be subdivided in one, two or all three co-ordinate directions.
The popular Octree data structure can be viewed as a special case of the 2n tree.
To start the adaptive Cartesian grid generation process, a single-root Cartesian cell covering

the entire computational domain is produced �rst. This cell is called a root cell because it
occupies the top level—the root—of the 2n tree. This root cell is recursively subdivided so
that all the Cartesian cells—the leafs in the 2n tree—satisfy the minimum grid resolution, i.e.

�x6dmax; �y6dmax; �z6dmax

Then for each geometric entity, all the Cartesian cells intersecting the entity are again recur-
sively re�ned so that all the Cartesian cells intersecting the geometric entity satisfy another
resolution requirement, i.e.

�xi6dint ; �yi6dint ; �zi6dint

Note that since all geometry entities support the ‘intersection’ operation, it is easy to identify
which Cartesian cells are intersected by the geometric entities. In the case of a triangulated
surface, each triangle is used to ‘intersect’ the Cartesian cells. To determine whether a triangle
intersects a Cartesian cell, the bounding box of the triangle is computed �rst to obtain (xmin,
ymin, zmin) and (xmax, ymax, zmax). A necessary condition for the triangle to intersect a Cartesian
cell is that the bounding box must overlap the Cartesian cell. If they do, a triangle–cube
intersection algorithm is used to further test whether they intersect each other.
The next step is a signi�cant departure from the approaches presented in References

[26; 27]. In order to support ‘non-water-tight’ geometries, the ‘inside’ or ‘outside’ of ge-
ometries are deliberately not de�ned. Because each geometry entity may have a di�erent
orientation, it is not possible to use the normal of an entity as an indication as to which is
inside the computational domain. Instead, the user needs to select one single Cartesian cell
inside the computational domain, as shown in Plate 3(c). Note that we have identi�ed cells
which intersect the geometric entities, as shown in Plate 3(b). These intersected cells also
serve to divide the ‘interior cells’ and the ‘exterior cells’ (cells outside the computational
domain). Then by using a neighbour-painting algorithm, all the Cartesian cells inside the
computational domain can be determined. This neighbour-painting algorithm is again recur-
sive in nature. The actual painting starts from the cell which the user selects. This cell is �rst
painted as ‘interior’ (i.e. a �ow cell). Then its neighbours are examined. If a neighbour is

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:703–717



ADAPTIVE CARTESIAN GRID FOR DIRTY GEOMETRY 711

not a ‘intersected’ cell (a cell which is intersected by a geometric entity), then this neighbour
is also painted as ‘interior’. This process is carried out for all the painted cells until none of
the neighbours of the ‘interior’ cell are unpainted, as shown in Plate 3(d). At this stage, the
painted cells are divided from unpainted cells by the ‘intersected’ cells. All the unpainted cells
are then considered ‘exterior’ cells (i.e. cells considered outside the computational domain).
After that, all the exterior cells and intersected cells are removed from the computational
domain. Cartesian cells too close to the geometry (e.g. within dmin=2 distance from the ge-
ometry) are also removed so that the gap between the Cartesian grid and the geometry is
su�ciently large, as shown in Plate 3(e). A gap of reasonable size allows high-quality grid
cells to be generated between the Cartesian grid and the geometry.

Connecting the interior grid to the boundary

At this stage, we have a region or regions of adaptive Cartesian grids, whose boundary faces
form the so-called Cartesian front. For example, the Cartesian front generated with a missile
geometry is shown in Figure 5. The Cartesian front is composed of Cartesian faces, with
stair-step-kind of sharp corners. The Cartesian front must somehow be ‘connected’ to the

Figure 5. (a) A missile geometry, (b) the stair-step Cartesian front and (c) the smoothed Cartesian front.
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geometric entities to produce a useful computational grid. There are possibly many di�erent
ways in which one can connect the Cartesian front to the boundary. The most obvious and
robust way is probably through projecting the Cartesian nodes from the Cartesian front to the
geometric entities. Before one does the projection, it is appropriate to smooth the Cartesian
front so that the ‘steps’ in the Cartesian grid is smoothed out. This can be accomplished
through the use of a Laplacian smoother, i.e.

rnewi = roldi (1− w) + w
1
Nnb

∑
rc

where ri is the position vector of a node on the Cartesian front, and Nnb is the number
of Cartesian faces sharing node i, and rc are the face center position vectors of the faces
sharing node i, and w is a relaxation factor in [0 1]. The Laplacian smoothing algorithm can
be applied several times to obtain a reasonably smooth front. Shown in Figure 5(c) is the
smoothed Cartesian front after the Laplacian smoother is applied 4 times with w=0:5. Note
that the front is much smoother than the stair-step Cartesian front shown in Figure 5(b).
The smoothed front is then projected to the geometry according to the minimum distance

rule. It can be proved mathematically that the projection lines cannot intersect each other
away from the geometric entity. Note that per de�nition, the geometric entities must support
the projection operation, which comes handy now. Because the Cartesian front is composed
of boundary faces of a ‘solid region’, the front is closed and ‘water-tight’. After the front is
projected to the boundary geometric entities, a ‘water-tight’ surface grid is generated on the
boundary. By connecting each point on the Cartesian front and the corresponding projected
point on the boundary, we obtain a valid computational grid as shown in Plate 3(f). After the
projection, a single layer of prism cells (quadrilateral cells in two dimensions) with arbitrary
polygon footprints is generated in three dimensions. This single layer can be sub-divided into
multiple layers with proper grid clustering near the geometry to resolve a viscous boundary
layer if necessary.
The e�ciency of the projection operation in three dimensions is critical to the success of the

method. In a typical application, we usually have a triangulated surface with N triangles, and
a Cartesian front with M nodes. A brute-force exhaustive search-based projection algorithm
would take O(MN ) operations, which is too expensive even for medium-sized applications.
Instead, an ADT tree [29] is used to record the bounding boxes of the triangles. Given a node
to project, only triangles close to the node are identi�ed from the tree-based search operation,
and are projected to. This new algorithm reduces the number of operations from O(MN ) to
about O(M logN ). The speed-up for a medium-sized problem (N =100 000, M =100 000)
can be more than several orders of magnitude.
A projection based on the minimum distance rule usually misses geometrically important

concave features, such as the corner points in Figure 3. In order to preserve these features,
they must be detected or speci�ed �rst. One criterion is to detect all sharp edges based on
the angle between the two faces sharing an edge. Then a feature-preservation technique is
used to reconnect the front nodes to those features. This technique is schematically shown in
Figure 6.
In many applications, it may be too expensive or unnecessary to preserve all the features in

a geometric entity. Then the projection algorithm can serve as an automatic feature suppression
operator. This capability will be demonstrated in a test case later.
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Figure 6. Schematic of feature preservation.

Figure 7. An invisible gap and a fully resolved gap.

Handling of cracks, overlaps and invalid manifolds

Recall that B2I approaches cannot handle cracks and overlaps because a ‘water-tight’ sur-
face grid is a necessary starting point. In the current I2B approach, cracks smaller than the
minimum grid resolution dmin are not ‘visible’ to the Cartesian grid generator, which is il-
lustrated in Figure 7(a). However, if the geometry has an opening bigger than the minimum
grid resolution, this opening is considered ‘physical’ by the Cartesian grid generator, and is
fully resolved as shown in Figure 7(b). Fortunately, most of the cracks appearing in CAD
STL �les are due to slight mismatches between di�erent patches. Therefore, the current I2B
viscous Cartesian grid approach can handle these cracks without any problems because the
minimum grid resolution is usually much larger than the size of the cracks. However, if large
cracks exist in a geometry model, which are not physical, they have to be closed manually
by the user. Fortunately, these large cracks are rare, and can be easily spotted through visual
inspection of the generated Cartesian grid.
It turns out that overlaps are no problems for the I2B approach because overlaps do not

alter the topology (inside and outside) of the Cartesian grid. Through the use of projections,
the patch closest to the Cartesian front is always used. It is guaranteed that the projections
would not intersect each other.
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In the case of an invalid manifold caused by an extra piece of geometry ‘outside’ the
computational domain, it is actually not a problem at all for the grid generator. However, if
the piece is inside the computational domain, the grid generator will treat it as a ‘thin’ wall.
As a result, volume grids on both sides of the extra piece of geometry will be generated. If
the extra piece should not have been there, the user must manually remove this extra piece.
Fortunately, invalid manifolds ‘inside’ the computational domain are usually rare, and can be
easily spotted and removed.
It is easy to see that the I2B viscous Cartesian approach is completely ‘topology’ based,

and cannot fail for arbitrarily complex geometries. This property has been con�rmed with
many cases involving complex ‘dirty’ geometries.
One di�culty with the current I2B approach is the control of grid quality near the geometry.

A small number of cells may be skewed and have small volumes. The way we used to �x these
problems is to merge the skewed cells with their neighbours to improve the grid quality. Since
the �ow solver can handle arbitrary polyhedra, this approach has been shown to be e�ective.

DEMONSTRATION CASES

Demonstration of automatic feature suppression

The I2B viscous Cartesian grid method can be fully automated. In most cases, the user needs
only to input one parameter, i.e. the geometry surface grid resolution dint. The minimum and
maximum grid resolution can be determined based on the characteristic length scale of the
input geometry. Another unique advantage of the method is automatic feature suppression. In
many simulations, it is not necessary to resolve very �ne geometric features, or it is too costly
to resolve all the features. In those cases, we would like to suppress the �ne geometric features.
The viscous Cartesian grid can automatically suppress all features smaller than the surface
grid resolution, i.e. smaller features than the grid resolution are smoothed out automatically.
To demonstrate this capability, we again use an auto part as an example. Figure 8(a) shows
the geometry of the part, and Figure 8(b)–8(d) shows the surface meshes with varying surface
grid resolutions. It is obvious that the geometry is better resolved with �ner grid resolutions.

Demonstration with more complex geometries

Several more complex geometries are shown here with generated surface grids. Shown in
Plate 4 is the engine grid generated for the ‘dirty’ geometry shown in Plate 1. This grid
has about 125 000 cells, and was generated in about 40 min on a Pentium III 450 MHz PC
running the Linux operating system. With a traditional grid generator, it took 2–3 man-months
to repair the geometry and generate a computational mesh for this geometry. A speed-up factor
of more than three orders of magnitude was achieved in this case.
Plate 5 displays a more complex engine geometry, and the generated computational grid.

Plate 6 shows the viscous Cartesian grid for a passenger cabin with six dummies. Both grids
were generated within 4 h. Note that all the geometries are not ‘water-tight’, and the I2B
viscous Cartesian grid method had no di�culty in handling them without any ‘cleaning’ or
‘repairing’.
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Figure 8. STL geometry of automotive part and surface grids with various resolutions.

Demonstration of feature recovery

In all the previous examples presented so far, no feature preservation is necessary. In aerospace
applications, however, geometric feature preservation may be critical. For example, geometric
features in an aircraft must be captured if one is to accurately predict the lift and drag of the
aircraft. In this demonstration, a �ghter aircraft is used as an example to demonstrate feature
preservation. The input format of the aircraft is PLOT3D surface patches. The patches, how-
ever, do not form a ‘water-tight’ geometry surface. There are mismatches, holes and overlaps
along the patch boundaries. As a matter of fact, there is one large hole in the geometry,
which must be �lled before grid generation can take place. The other cracks and holes are
very small, and do not need any special treatment. In addition, geometrically important sharp
edges are detected automatically, or speci�ed by the user, as shown in Plate 7(a). Further-
more, several surface sources are used to cluster grid cells near sharp edges or high-curvature
regions due to the �exibility o�ered by the adaptive Cartesian grid. A viscous Cartesian grid
was then generated successfully with critical feature preservation. The computational grid is
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shown in Plate 7(b). Note that the critical features were captured correctly. A sample �ow
computation was carried out, and the computed pressure distribution at Mach=0.3 is shown
in Plate 7(c), demonstrating the integrity of the computational grid. The total time spent in
generating this grid is about a day, which includes both user time and CPU time to produce
the grid.

CONCLUSIONS

In order to handle ‘dirty’ geometries with cracks and overlaps, a new grid generation ap-
proach, namely interior to boundary (I2B) approach, is advocated in this study. To support
‘non-water-tight’ geometries, a more general de�nition of a geometric entity is also given.
Any geometry supporting the operations of intersection and projection can be used in grid
generation. Therefore, the requirement of ‘water-tightness’ is completely avoided. Based on
the generalized de�nition of geometric entities, a general I2B grid generation approach is then
presented. The viscous Cartesian grid approach is further extended to be an I2B approach to
handle arbitrary geometries. Many very complex geometries are used to demonstrate the abil-
ity of new grid generation approach. It is con�rmed that arbitrary ‘dirty’ geometries can be
handled automatically.
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Plate 1. A ‘Dirty’ non-water-tight automobile engine geometry.

Plate 2. 2n Tree data structure.
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(a) (b)

(c) (d)

(e) (f)

Plate 3. Schematic of I2B grid generation approach.
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Plate 4. Adaptive Cartesian grid for the car engine shown in Plate 1.
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Plate 5. A more complex automobile engine and its surface grid.
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Plate 6. Passenger cabin mesh.
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Plate 7. Geometry, computational grid and computed pressure distribution with Mach 0.3.
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Plate 7. (Continued).
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